
DeepRL Project: FlappyBird
Souhaiel BEN SALEM, Charbel ABI HANA, Adrian GARNIER, Israfel SALAZAR

{souhaiel.ben_salem, charbel.abi_hana, adrian.garnier_artinano,
israfel.salazar}@ens-paris-saclay.fr

1 Introduction
This assessment consist in implementing a tabular re-
inforcement learning algorithm to tackle the Flappy
Bird game. We decided to use different deep reinforce-
ment learning algorithms and modifications searching
to achieve the maximum performance. We describe in
this report the different approaches we took to solve
the this task, making particular attention on the win-
ning implementation but also mentioning why other
implementations did not succeed.

This report will be organized in the following sec-
tions: In Section 2 we describe the game and its param-
eters. In Section 3 we quickly describe two attempts
that were discarded because of the low performance,
PPO and A2C. In Section 4 we describe our winning
algorithm based on DQN. Here, we discuss the imple-
mentation and some variations of DQN, and the hyper-
parameter exploration to ensure the best performance.
We finish in Section 5 presenting and discusing the re-
sults.

2 Description of the Game
Flappy Bird is a game published in 2014 for mobile de-
vices. The objective of the game is to navigate a small
bird through a series of pipes by tapping the screen
to make the bird flap its wings and fly upwards, while
gravity pulls it down. During the game, a point is given
each time the bird passes over or under a pipe, and it
looses a point if it collides with the pipe. The game
theoretically has no end, but in this version, a message
saying that the game was won is reached at around 20
pipes.

2.1 Environment Description
The environment is described by a tuple, the first value
being the information about the bird, its x and y co-
ordinate and its vertical velocity. The second element
is a list with information about the pipes. Each pipe
has 4 values, the x value for the left and right corners,
the height of the pipe, and a Boolean indicating if it is
coming form the top or bottom of the map where True
indicates that the column is coming from the top.

2.2 Environment Transformation
In order to use DQN to estimate the reward, there are
several changes we make to the data. The first change
is adding the velocity in the x axis. This value is con-
stant in this scenario, but it gives us the same shape of
the pipes so it allows us to add it into the network in a
single matrix. The second change is the pipe structure,
we describe the pipes position in relation to the current
position of the bird, so we define h and v to signal the

horizontal and vertical distance from the bird to the
pipes edges. Finally we place a 1 or 0 to indicate if its
coming out of the top of the bottom, and an additional
value to indicate if it is present or not. We had no need
to include the width of the bar since in this scenario it
has a constant width of 0.1.

In order to use DQN, we need to create a fixed size
of input, so we create a variable called Field of View
(FoV) that indicates how many pipes it can see. Then
we take the pipes, we sort them in order of horizontal
proximity, and then we remove all the pipes that have
passed the Dropping point. We decided to make the
dropping point the point in which there is no possibil-
ity of the bird colliding with the pipe. To generate the
final description, we take the first N pipes, and if there
are no more available, we fill up the rest with padding
and we indicate that they are not in the screen.

Figure 1: Illustration of the different variables of the envi-
ronment.

3 Other Attempts

3.1 Proximal Policy Optimization
(PPO)

Proximal Policy Optimization (PPO) algorithm is a
state-of-the-art reinforcement learning (RL) method
that combines the benefits of trust region policy op-
timization (TRPO) with the simplicity of first-order
optimization algorithms.
The key contribution of PPO lies in the optimization
objective, which includes a clipped surrogate objective
function. This clipping technique ensures that the pol-
icy updates remain within a trust region, preventing
excessively large updates that could harm the learning
process. By maintaining a balance between exploration
and exploitation, PPO achieves stable learning while
reducing the likelihood of policy degradation.

1



DeepRL Project Abi Hana, Ben Salem, Garnier & Salazar

3.1.1 Intuition

We decided to try PPO on our Flappy Bird environ-
ment due to its several advantageous properties. Some
of the reasons for selecting PPO :

• Robustness: PPO has demonstrated robust
learning capabilities across a diverse range of
tasks, including both continuous and discrete ac-
tion spaces. Flappy Bird, with its discrete action
space, could benefit from the algorithm’s robust-
ness.

• Stability: PPO’s clipped surrogate objective
function helps maintain stability during training
by constraining policy updates within a trust re-
gion. This prevents overly large updates, which
could destabilize learning in the Flappy Bird en-
vironment.

• Sample efficiency: PPO is an on-policy algo-
rithm, which is generally more sample-efficient
than off-policy methods we tried earlier. In our
Flappy Bird environment, this characteristic can
lead to faster learning and potentially better per-
formance with fewer training iterations.

3.1.2 Challenges and Limitations of Applying
PPO in our environment

Although we initially believed that PPO would be
well-suited for the Flappy Bird environment, we en-
countered several issues that limited its effectiveness.
First of all, our Flappy Bird environment has sparse
rewards, which can make it challenging for PPO to
learn an effective policy. PPO relies on gradient-based
updates, which can be hampered when rewards are
infrequent and hard to relate to actions. Addition-
ally, PPO requires fresh data for each update whereas
in the our environment, with its highly dynamic and
potentially short episodes, the agent may not accu-
mulate enough meaningful experience before needing
to update its policy. This also makes finding the right
hyperparameters challenging to which the performance
of the PPO algorithm is sensitive.

3.1.3 Possible solutions

To make PPO work in our Flappy Bird environment,
one can try several RL adaptation techniques such as
reward shaping which consists of introducing an in-
termediate rewards to guide the agent’s learning more
effectively. For example, we can provide small rewards
for maintaining a certain height or distance from the
pipes, or for staying alive for a longer duration. This
can help the agent receive more frequent feedback and
potentially speed up the learning process. Another ap-
proach is frame stacking where we can combine sev-
eral consecutive observations into a single input for the
agent which can help our agent better understand the
dynamics of the game and learn to anticipate the move-
ment of the bird and pipes.

Another approach that PPO could benefit from is cur-
riculum learning, that consists of training the agent
with simpler versions of the environment and gradu-
ally increase the difficulty. For example, we can begin
with larger gaps between pipes or slower pipe move-
ment and progressively make the game more challeng-
ing. Howver this approach would require more training
time and episodes which defies the constraints of the
problem.

3.2 Advantage Actor Critic A2C.

We also tried implementing Advantage Actor Critic,
A2C. This method searches to reduce the variance in
the reinforcement learning response combining policy-
based and value-based methods. We learn two approx-
imation functions: a policy that controls the agent and
a value function that indicates how good the action
taken by the policy is. A2C is designed to optimize the
performance of an agent in an environment by maxi-
mizing the expected cumulative reward. It achieves
this by estimating the value function of the current
state and using it to calculate the advantage of each
action taken by the agent. This advantage is then used
to update the policy and value functions, allowing the
agent to learn the optimal policy for the task at hand.

A2C seemed to be a good option for the Flappy Bird
environment because it can learn a policy directly from
the agent’s interactions with the environment. Since
the game has sparse rewards, the agent receives a re-
ward only when it passes through a pipe, value-based
methods like A2C can be useful because they estimate
the value of each state, which can help the agent to gen-
eralize and learn from sparse rewards more effectively.
However, this implementation failed mainly because of
the time needed to search for the optimal hyperparam-
eters. The convergence of the two networks make the
algorithm more sensible to the initialization and find-
ing the optimal parameters to win the game was too
complex.

4 Deep Q-Network
The Deep Q-Network (DQN) works by having a net-
work that learn how to estimate the reward of a given
state. There are 2 main components for this approach,
a deep neural network and a replay buffer. First, the
deep neural network has an input that represent the
state of the environment, and an output of the ex-
pected Q value for each action. Additionally we have
a replay buffer that keeps track of previous episodes
played, and this allow us to sample actions from ear-
lier with a random order. The replay buffer allows us
to remove the correlation between the transition in the
batch, allowing the network to learn properly.

In our case, we are using a Convolutional Neural
Network as the network from the agent. This consist
on two convolutional layers, and one fully connected
linear layer of 64 neurons, and finally an output for

2



DeepRL Project Abi Hana, Ben Salem, Garnier & Salazar

each move. Figure 2 shows a diagram of the architec-
ture.

Figure 2: Diagram representation of the DQN Network
used.

For the training we found out that reducing the
exploration over episodes had a good impact on the
learning capabilities of the network for this game. In
order to do this we indicate which value epsilon should
start in, which will be the final value epsilon can take,
and in what episode it should get to that point.

Another change that was tested was changing the
schedule over the network parameters. Three scenarios
were tested, updating after 1, 10, and 100 episodes.

4.1 Dueling DQN
The Dueling DQN is proposed as an improvement over
DQN. This proposes that the Q-value can be divided
into V (s) which is the value of a given state, and A(s, a)
which is the advantage of taking one action over an-
other one. You can obtain the Q-value of an action
by adding the advantage and the value of the state
Q(s, a) = A(s, a)+V (s) since A indicates the impact a
certain action would have within the given state, being
positive or negative. The benefit that this architecture
provides is a faster converging time, this was shown on
the Atari benchmarks [Wang et al., 2016].

In order to use Dueling DQN, we used the model
shown in 3. This model has the same convolutional
layers as the DQN model we previously showed, but
instaed of just having one linear layer of 64 neurons, it
has two. The lower part of the model creates an ini-
tial estimate of Up and Na, and the top part generates
V (s), Finally, to get the final output we do the follow-
ing operation Q(s, a) = V (s) + A(s, a) − 1

N

∑
k A(s, k).

Figure 3: Diagram representation of the Dueling DQN Net-
work used.

This final step is important to guarantee that the
Dueling DQN learners the values as expected. In the
paper, it says that in order for this approach to work,

we have to force the network that gives the advantage
to have an average of 0. One of the ways we can enforce
this is by getting the final outputs, and subtracting the
mean from the vector, this way the sum of the values
will be equal to 0.

4.2 Double DQN
Another problem with the DQN is that it tends to
overestimate the reward of a given state, action pair.
[Van Hasselt et al., 2016] demonstrated that the base
DQN tends to overestimate the values for Q which is
harmful for the training and the overall performance
sometimes resulting in a sub optimal policy. The cause
of this tends to come from the max operation in the
Bellman equation:

Q(st, at) = rt + γ max
a

Q′(st+1, a)

Where Q′(st+1, a) were the Q values calculated by the
target network. The authors of the paper proposed to
extend DQN separating the action selection and ac-
tion evaluation into two different networks that esti-
mates the Q-values. One of the networks, the "target
network", is used to estimate the Q-values, while the
other network, "online network" is used to select the ac-
tions. This implies, choosing actions for the next state
using the trained network but taking values of Q from
the target network. Using this, the new expression for
the target Q-values will be:

Q(st, at) = rt + γ max
a

Q′(st+1, arg max
a

Q(st+1, a))

4.3 Dueling Double DQN
This agent essentially combines both extensions; we
use the dueling DQN network architectures and the
optimizer updates the loss function developed from the
double DQN agent. We use two separate networks for
both Double and Dueling DQN with one network used
for selecting actions and another for estimating the Q-
values. We also split the Q-value function into state
value and advantage for each action, allowing for effi-
cient learning of valuable states and advantageous ac-
tions.

5 Results
The training procedure consisted of doing sweeps over
the hyperparameters of the 4 DQN agents and we ob-
tain the following combination: updating the target
parameters at larger steps showed less stability dur-
ing training, using the scheduler on the ϵ parameter
showed more effective as the training was stabilized
throughout the episodes. A batch size of 32, learning
rate of 3 × 10−4 and a discount factor of 0.8 showed
the best results. On these same hyperparameters, for
maximum training episodes of 1000 and evaluating at
each 10 epochs where each validation step was on 100
episodes, we show the results obtained in figure 4.

3



DeepRL Project Abi Hana, Ben Salem, Garnier & Salazar

Figure 4: Rewards on DQN base and Extensions.

In the figure above we can see that all the DQN
methods have a similar learning curve. However,
we can clearly see that extensions of DQN not only
achieved a higher performance on the game but also
converge faster. This fast convergence is particularly
marked for DuelingDQN. In genereal we observed that
DuelingDQN and DuelingDoubleDQN obtained the
highest scores.

We show that for 100 validation episodes, the du-
eling double DQN model obtained an average reward
of 25.42 with a standard deviation of 22.4. That was
the best model we trained and we show the comparison
with the baseline model (Stable Agent) (figure 5) which
had an average reward of 3.68 and standard deviation
of 5.53 and the base DQN model with an average re-
ward of 24.34 and a standard deviation of 24.2. From
interacting with the environment, on runs where we
obtained an average reward of more than 20 the envi-
ronment showed a success message which meant that
the problem was solved.

Figure 5: Rewards on DQN base and Extensions with Sta-
ble Agent.

6 Conclusion
In this project, we successfully solved the FlappyBird
environment through the DQN method and further
optimized it with hyperparameter sweeps and imple-
mentations of extensions of the DQN method namely
Double, Dueling and Double Dueling DQN. We ob-
tained the best results on the double dueling DQN

model with the lowest variance in the reward and the
highest mean reward. Training showed good reward
convergence but we could further improve the stability
of the network through bigger networks and longer
training time (we had to adhere with a maximum of
2h of training). We could also explore more extensions
of the DQN method such as a prioritized replay buffer
developed in [Schaul et al., 2016] where sampling from
the replay buffer isn’t uniform but samples are assigned
priorities according to the training loss. Noisy DQN in
[Fortunato et al., 2019] also demonstrated a very sim-
ple idea for learning exploration characteristics during
training instead of having a separate schedule related
to exploration through adding noise to the weights
of fully connected layers of the network and adjust
the noise through backpropagation. Rainbow DQN in
[Hessel et al., 2017] combined all of the above exten-
sions and got the most improved DQN model which
we can explore further in this project.

On the other hand, Proximal Policy Optimization
(PPO) and Advantage Actor Critic (A2C) faced chal-
lenges in handling the sparse rewards and dynamic
environment of Flappy Bird. Despite these difficulties,
these algorithms have potential for future improve-
ments, such as through reward shaping and curriculum
learning, as discussed earlier in the report.

One interesting aspect to consider for future work is
the generalization capabilities of the trained agents. In
our experiments, we focused on training the agents in
a specific Flappy Bird environment. However, it would
be valuable to investigate how well these agents can
adapt to new, unseen environments, such as modified
Flappy Bird levels or even different games with similar
dynamics.

References
[Fortunato et al., 2019] Fortunato, M., Azar, M. G.,

Piot, B., Menick, J., Osband, I., Graves, A., Mnih,
V., Munos, R., Hassabis, D., Pietquin, O., Blundell,
C., and Legg, S. (2019). Noisy networks for explo-
ration.

[Hessel et al., 2017] Hessel, M., Modayil, J., van Has-
selt, H., Schaul, T., Ostrovski, G., Dabney, W., Hor-
gan, D., Piot, B., Azar, M., and Silver, D. (2017).
Rainbow: Combining improvements in deep rein-
forcement learning.

[O’Shea and Nash, 2015] O’Shea, K. and Nash, R.
(2015). An introduction to convolutional neural net-
works. CoRR, abs/1511.08458.

[Schaul et al., 2016] Schaul, T., Quan, J., Antonoglou,
I., and Silver, D. (2016). Prioritized experience re-
play.

[Van Hasselt et al., 2016] Van Hasselt, H., Guez, A.,
and Silver, D. (2016). Deep reinforcement learning

4



DeepRL Project Abi Hana, Ben Salem, Garnier & Salazar

with double q-learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 30.

[Wang et al., 2016] Wang, Z., Schaul, T., Hessel, M.,

Hasselt, H., Lanctot, M., and Freitas, N. (2016). Du-
eling network architectures for deep reinforcement
learning. In International conference on machine
learning, pages 1995–2003. PMLR.

5


	Introduction
	Description of the Game
	Environment Description
	Environment Transformation

	Other Attempts
	Proximal Policy Optimization (PPO)
	Intuition
	Challenges and Limitations of Applying PPO in our environment
	Possible solutions

	Advantage Actor Critic A2C.

	Deep Q-Network
	Dueling DQN
	Double DQN
	Dueling Double DQN

	Results
	Conclusion

