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Abstract

Super resolution is a fundamental problem in computer
vision, which aims at generating high-resolution images
from low-resolution inputs. In recent years, deep learning
approaches have shown promising results in addressing this
challenge. In this project, we present a comprehensive re-
view of deep learning-based super resolution methods, with
a particular focus on GAN-based architectures such as SR-
GAN [15] and ESRGAN [25]. We discuss the key compo-
nents of state-of-the-art super resolution networks, includ-
ing feature extraction, feature fusion, and reconstruction.
We also takcle the DIV2K dataset using these approaches
while exploring the different training strategies and loss
functions that have been proposed to enhance the perfor-
mance of super resolution models. Furthermore, we provide
an overview of benchmark datasets and evaluation metrics
for our super resolution models.

1. Introduction
Single image super-resolution (SISR) has become an in-

creasingly popular topic in both the research community
and industry as it addresses a fundamental low-level vi-
sion problem. The primary objective of SISR is to re-
cover a high-resolution (HR) image from a single, low-
resolution (LR) input image and go beyond the limitations
of the acquired data. The task of SR has various applica-
tions [30] [19] including medical imaging, remote sensing,
and surveillance.

Figure 1. Original LR image and the SR image obtained using our
model

Traditional methods for super resolution rely on hand-
crafted features and priors to estimate high-resolution im-
ages from low-resolution inputs. However, these methods
are often limited in their ability to capture complex image
structures and produce visually pleasing results. This is be-
cause when the upscaling factor is high, the ill-posed single
image super-resolution (SR) problem becomes more diffi-
cult, and the texture detail in the reconstructed SR images
is often missing.
Typically, the objective of supervised SR algorithms is to
minimize the mean squared error (MSE) between the recov-
ered high-resolution (HR) image and the ground truth. The
practice of minimizing the MSE is convenient as it max-
imizes the peak signal-to-noise ratio (PSNR), which is a
widely used measure for evaluating and comparing single
image super-resolution (SR) algorithms [29]. However, the
capability of MSE and PSNR to capture differences that are
perceptually relevant, such as high texture detail, is limited.
This limitation arises because they are defined using pixel-
wise image differences [27].
In recent years, perceptual-driven [10] deep learning ap-
proaches such as SRGAN [15] and ESRGAN [25] have
shown remarkable performance in super resolution by lever-
aging large-scale training data and powerful modeling ca-
pabilities. These methods laverage the power of genrative
adversatial network (GANs) [7] to enforce a solutions that
lies in the natural image maniforld.
We investigate the performance of these two architec-
tures by tackling the challenging DIV2K dataset while
also proposing a modified version of the loss function and
tweaking the training process for better and more effecient
results.
It is, however, important to note that our work and tests will
was mostly carried using the SRGAN architecture. This is
because as we will explain later, the ESRGAN is a much
deeper and demanding network that requires computational
ressources that we do not posess. We will nevertheless im-
plement ESRGAN and use our implementation and the au-
thors pre-trained weights to compare the performance of
both architectures.



2. Related Work

2.1. Pre-deep-learning super resolution methods

Prior to the advent of deep learning, traditional methods
for single image super-resolution (SISR) relied on hand-
crafted features and priors to recover high-resolution (HR)
images from low-resolution (LR) inputs. These methods
can be broadly categorized into three groups: interpolation-
based, reconstruction-based, and learning-based.
Interpolation-based methods, such as bicubic interpolation
and Lanczos interpolation [3], are simple and fast ap-
proaches that estimate HR images by interpolating the LR
images using predefined interpolation kernels. However,
these methods often suffer from blurring and ringing arti-
facts.
Reconstruction-based methods, such as total variation (TV)
[17] minimization and compressed sensing, formulate SISR
as an optimization problem and use regularizers to promote
sparsity or smoothness in the reconstructed HR images.
These methods can produce visually pleasing results, but
they are computationally expensive and may require com-
plex optimization algorithms.
Learning-based methods, such as exemplar-based methods
and patch-based methods [5] [4] [6] [9] , use training data to
learn mappings between LR and HR image patches. Neigh-
borhood embedding approaches [23] [24] are also a subcat-
egory of learning-based methods that were popular prior to
the emergence of deep learning. These approaches seek to
learn the mapping between LR and HR image patches by
embedding them into a common high-dimensional space.
Then, the mapping is obtained by performing regression
in this space. These methods can capture complex image
structures and produce high-quality results. However, they
may suffer from the limitations of the training data and may
not generalize well to unseen data.
Overall, while pre-deep-learning SISR methods can achieve
reasonable results, they often suffer from various limitations
and may not be suitable for practical applications. With the
emergence of deep learning, new approaches that leverage
powerful modeling capabilities and large-scale training data
have emerged, which have shown remarkable performance
in SISR.

2.2. deep learning super resolution approaches

2.2.1 Convolutional Neural Networks

In the field of computer vision, the current state of the art for
many problems is still achieved through the use of convo-
lutional neural networks (CNNs), which have been specifi-
cally designed to address these tasks. The success of CNNs
peaked especially after the introduction of ImageNet [14] in
2016. Deeper CNN architectures have been shown to have
the potential to substantially improve accuracy by model-

ing mappings of high complexity. However, training these
deep networks can prove challengin, which is why batch
normalization is often employed to counteract the internal
co-variate shift and ensure efficient training.
In light of these advancements, many researchers have ex-
plored the use of CNN-based techniques to address this
problem. That is why, a lot of CNN based algorithms for
SISR emerged during the past few years and have demon-
strated remarkable performance. SISR-specific architec-
tures such as [20] and [26] improve upon previous generic
methods and can learn upscaling filters directly while pro-
ducing more accurate results in less computation time. ,
Kim et al introduced deeply-recursive convolutional net-
work (DRCN) [13] that was considered state-of-the-art at
the time.
The current design choice for SISR specific netorks is
ResNets [8]. Residual Networks (ResNets) have been
shown to be effective in a range of computer vision tasks,
including SISR. In a ResNet, the neural network’s depth is
increased by adding residual connections between the in-
put and output feature maps, allowing the network to learn
more complex and abstract features. The key idea is to learn
a residual function, which estimates the difference between
the HR and LR images, and adds it back to the LR image to
obtain the HR image. This residual learning approach has
been shown to be effective in addressing the degradation
problem in SISR, where high-frequency information is lost
in the LR image. This approach was first applied to SISR
in [16]. This model achieved state-of-the-art performance
on benchmark datasets, demonstrating the effectiveness of
residual learning for the task of SISR. Since then, various
ResNet-based models have been proposed, including the
ones we study in this project (SRGAN and ESRGAN).

2.2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) have emerged as
a powerful framework for learning to generate data with
high quality and diversity. GANs consist of two neural net-
works: a generator network that synthesizes data samples
from a random noise input, and a discriminator network that
tries to distinguish between the synthesized data samples
and real data samples. The generator and discriminator are
trained simultaneously in an adversarial manner, where the
generator tries to fool the discriminator by generating realis-
tic data samples, while the discriminator tries to distinguish
between the real and synthesized data samples. GANs have
been applied to various computer vision tasks, including su-
per resolution.
GANs have become a popular for SISR due to their ability
to generate high-quality and visually realistic images. In the
context of super resolution, the generator network synthe-
sizes a super-resolved (SR) image from the low-resolution



(LR) input, and a discriminator network that tries to dis-
tinguish between the SR image and a ground-truth HR im-
age. The generator and discriminator are trained simulta-
neously in an adversarial manner, where the generator tries
to fool the discriminator by generating realistic SR images,
while the discriminator tries to distinguish between the gen-
erated HR images and the ground-truth HR images. The
first GAN-based SISR model was SRGAN, proposed in
2017. This model achieved state-of-the-art performance on
benchmark datasets and produced visually pleasing SR im-
ages with sharp edges and rich textures. Since then, various
GAN-based SISR models have been proposed such as the
Enhanced SRGAN (ESRGAN)

2.3. Loss functions

Loss functions are an essential component of SISR
algorithms as they help to guide the optimization process
and determine the quality of the generated SR images. As
discussed earlier, loss functions that operate at the pixel
level, such as mean squared error (MSE), face difficulty
in capturing the uncertainty associated with recovering
high-frequency details, such as texture. This is because
minimizing MSE tends to result in pixel-wise averages of
possible solutions that are often overly smoothed and lack
perceptual quality [18] [11]. Alternative such as PSNR also
have their drawbacks as we discussed in the introduction.
To address these limitation, alternative loss functions
such as perceptual loss [2] and adversarial loss have been
proposed. Perceptual loss measures the distance between
the high-level features extracted from the reconstructed
and ground truth images using a pre-trained deep neural
network such as VGG-19 [21]. Adversarial loss, which is
used in generative adversarial networks (GANs), encour-
ages the HR images generated by the generator network to
be indistinguishable from the ground truth HR images by
the discriminator network.

Figure 2. Effect of the used loss : patches from the natural im-
age manifold (red) and super-resolved patches obtained with MSE
(blue) and GAN (orange) [15]

These loss functions help to preserve high-frequency
details and produce visually pleasing HR images. While
both perceptual and adversarial loss functions have shown
promising results, recent studies have shown that the com-
bination of the two loss functions, also known as the VGG
loss, leads to the best performance in terms of perceptual
quality and numerical metrics.

3. Methodology
3.1. Datasets

The models were trained on the DIV2K dataset that con-
tains:

• 1600 training images of different sizes divided into
800 high resolution images and their corresponding
x4 down-scaled and bicubic-interpolated low resolu-
tion images.

• 200 test images divided into 100 high resolution im-
ages and their corresponding low resolution counter-
parts.

In addition to DIV2K’s test set, we also evaluated our mod-
els on the Set5 and Set14 benchmark datasets.The perfor-
mance of the models was evaluated using various quanti-
tative metrics such as peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), and visual quality.

3.2. models

The goal of single image super-resolution (SISR) is to
produce a high-resolution, super-resolved image ISR from
a low-resolution input image ILR. The image ILR is
the down-sampled and low-resolution version of its high-
resolution counterpart IHR. We harness the concepts of
two photo realistic super resolution models: SRGAN [15]
and ESRGAN [25].

3.2.1 SRGAN model

Architecture

The primary objective is to train a generative function G that
can accurately estimate the corresponding high-resolution
(HR) counterpart for any given low-resolution (LR) input
image.
The authors use generative function G, which is a feed-
forward convolutional neural network, specifically, a deep
ResNet (SRReset) parametrized by θG. Where, θG =
{W1:L; b1:L} are the weights and biases of an L-layer deep
network. We optimize a super-resolution specific percep-
tual loss function lSR to obtain θG. The generator function
is trained on a set of training images IHRn

, ILRn
, where



n = 1, ..., N (N = 800 for DIV2K).
We aim to minimize the following objective function:

θ̂G = argmin
θG

1

N

N∑
n=1

lSR(GθG(I
LR
n ), IHR

n ) (1)

We introduce a discriminator network DθD , which is opti-
mized in an alternating manner with GθG to solve the adver-
sarial min-max problem. This problem aims to find the op-
timal values of θG and θD that can generate super-resolved
images that are indistinguishable from the high-resolution
images in the training set. The objective function for this
problem is defined as follows:

min
θG

max
θD

EIHR∼ptrain(IHR)[logDθD (I
HR)]+

EILR∼pG(ILR)[log(1−DθD (GθG(I
LR)))] (2)

The main idea of using such a formulation is to train a
generative model G to produce super-resolved images that
can fool a differentiable discriminator D, which is trained
to distinguish between real images and super-resolved
images. By adopting this approach, the generator network
can learn to generate solutions that are photo realistic
and difficult for the discriminator network to classify,
leading to perceptually superior results that lie in the
manifold of natural images. This is in contrast to traditional
super-resolution methods that minimize pixel-wise error
measurements such as the MSE, which often results in
overly smooth and unrealistic super-resolved images.
The architecture of the SRGAN model consists of a deep
generator network G, which is composed of 16 residual
blocks with identical layout. Each residual block has
two convolutional layers with 3x3 kernels and 64 feature
maps, followed by batch − normalization layers and
ParametricReLU as the activation function. The res-
olution of the input image is increased with two trained
sub-pixel convolution layers (PixelShuffle layers). We
train the discriminator network to tell real HR images
from generated SR samples. The discriminator network
consist of eight convolutional layers with an increasing
number of 3x3 filters , increasing by a factor of 2 from
64 to 512 kernels, as in the V GG network and strided
convolutions are used to reduce the image resolution each
time the number of features is doubled. The resulting 512
feature maps are followed by two dense layers and a final
sigmoid activation function to enforce a probability for
sample classification. We use a LeakyReLU (α = 0.2) is
used while avoiding max-pooling throughout the network.
The architecture of the model is summarized in Figure 3

Our Perceptual Loss and training process

The main contribution introduced by authors of the SRGAN
paper is the use of the GAN architecture and the introduc-
tion of a novel perceptual loss function that consists of an
adversarial loss and a content loss based on VGG’s feature
maps. This loss function is proved to be much better than
MSE at capturing perceptually relevant differences.

lSR = 6.10−3lSR
V GG/5,4︸ ︷︷ ︸

content loss

+ 10−3lSR
Gen︸ ︷︷ ︸

adversarial loss

Where The generative loss lGen
SR is defined based on the

probabilities of the discriminator DθD (GθG(ILR)) over all
training samples as:

lSR
Gen = −

N∑
n=1

logDθD (GθG(I
LR))

Our approach consisted of implementing the SRGAN
architecture proposed by the authors while making changes
on the perceptual loss function and the training process.

Modified perceptual loss function for SRGAN:

through intuition and experimentation, we introduce the fol-
lowing perceptual loss function:

lSR
modified = l

SR
MSE︸ ︷︷ ︸

pixel loss

+6.10−3lSR
V GG/5,4︸ ︷︷ ︸

content loss

+ 10−3lSR
Gen︸ ︷︷ ︸

adversarial loss

+ 2.10−8lSR
TV︸ ︷︷ ︸

total variation

Intituition:

• We introduce MSE loss to penalize the differences
in pixel space which ultimately leads to more accu-
rate color fidelity between ISR and IHR. By mini-
mizing this difference, the super-resolved image can
achieve accurate color fidelity with the ground truth
image. In addition to the adversarial loss and percep-
tual loss, MSE loss can provide a more direct control
of the image quality and is computationally efficient
to compute. Therefore, the introduction of MSE loss
in our model can lead to improved image quality and
greater fidelity between the super-resolved image and
the ground truth image in terms of pixel-wise similar-
ity.

• Inspired by style transfer GANs [28], we introduce TV
loss to reduce noise inISR. TV loss acts as a regu-
larization term that measures the overall variation of
intensities in the image, promoting spatial smoothness
and reducing noise. In the context of SISR, the in-
troduction of TV loss can improve the quality of the



Figure 3. The Generator and Discriminator networks of our SRGAN model

super-resolved image by reducing the noise that may
arise from the low-resolution input image. However,
since TV loss can also lead to smoothing of textures in
the image, we used a very low weight its loss com-
ponent to avoid crashing textures during the super-
resolution process. This allows for better preservation
of the high-frequency details in the super-resolved im-
age, while still benefiting from the noise reduction pro-
vided by the TV loss.

Tweaking the pre-training process:

Instead of pre-training the Generator network using MSE
loss like the authors did, we experimented with a weighted
MSE and L1 loss, which both yielded better results than
MSE from a human viewer’s perspective, and settled for
the latter. Intuitively, this is because MSE is sensitive to
outliers, which can result in overly-smoothed solutions and
loss of fine details in the image. In contrast, MAE gives
more weight to small differences between the predicted im-
age and the ground truth image, allowing for better preser-
vation of the high-frequency details in the SR image. In
addition, MAE is a more robust loss function for handling
the non-linear mapping from the low-resolution input im-
age to the high-resolution output image. By minimizing the
absolute differences between the predicted and ground truth
images, the generator is able to learn more effectively and
produce higher quality super-resolved images.
For the most part, we follow the same training process de-
scribed by the authors in the paper.
We trained our model for 850 epochs and used the follow-
ing setting of hyperparameters:

• LR CROPPED SIZE = 24: The size of the low-
resolution cropped input image used for training.

• UPSCALE = 4: The upscaling factor used to gen-

erate the high-resolution output image from the low-
resolution input image.

• HR CROPPED SIZE = UPSCALE *
LR CROPPED SIZE: The size of the high-resolution
cropped output image used for training.

• BATCH SIZE = 16: The number of image samples in
each mini-batch during training.

• EPOCHS = 50: The number of epochs (i.e., complete
passes through the training dataset) used for training.

• LR = 0.0001: The learning rate used for training the
model.

• BETAS = (0.5, 0.9): The values of the beta1 and beta2
hyperparameters used by the Adam optimizer during
training.

• adversarial loss coef = 0.001: The coefficient for the
adversarial loss used during training.

• vgg loss coef = 0.006: The coefficient for the VGG
loss used during training.

Observations:
During our training and experimentation with SRGAN,
we observed that the super-resolved images produced by
the model exhibited noticeable artifacts, particularly in
dark areas and around edges. Upon further investigation,
we discovered that these artifacts were caused by the fact
that our generator was producing out-of-range values,
specifically negative floating points, that upon projection to
the interval [0, 255] when reconstructing the image would
cause these ’pixel burning’ artifacts shown in Figure4
This is a known problem for SRGAN and it caused mainly
because of the Batch Normalization layers. In our case, we



Figure 4. examples of the artifacts caused by batch normalization

used a simple ReLU function to clip negative values and
solve this problem.

3.2.2 ESRGAN model

Architecture

ESRGAN (Enhanced Super-Resolution Generative Adver-
sarial Networks) is an improved version of SRGAN that
addresses some of the limitations of the original model.
ESRGAN improves on the ideas introduced by SRGAN to
achieve a better perceptual quality. The improvements are
mainly technical and consist of modifying the architecture
of the generator network as shown in Fig.7.
One major difference between ESRGAN and SRGAN is the
use of the Residual-in-Residual Dense Block (RRDB) in
ESRGAN, which replaces the residual blocks used in SR-
GAN. The RRDB contains multiple Residual Dense Blocks
(RDBs), which are used to learn the features of the input
image at different scales. The output of each RDB is then
combined to form the final output of the RRDB. This ap-
proach allows for more efficient feature learning and greater
preservation of details in the super-resolved image.
They also removed batch normalization layers which
caused artifacts in the SR images produced by SRGAN and
used nearest neighbor upsampling instead of pixelshuffling.
The authors also modified the discriminator network based
on the Relativistic GAN [12]. As opposed to the traditional
discriminator in SRGAN, which determines the probability
that an input image x is both real and natural, a relativis-
tic discriminator focuses on predicting the probability that
a real image xr is comparatively more realistic than a fake
image xf .

This is illustrated by the following figure :

Figure 5. standard discriminator VS relativistic discriminator [25]

Enhanced Perceptual Loss and training

The loss function was also modified by introducing L1

penalty and taking V GG features before activation for the
perceptual loss component.

LG = Lpercep + λLRa
G + µL1

where L1 = Exi
||G(xi) − y||1 is the content loss that

evaluates the 1-norm distance between the recovered
image G(xi) and the ground-truth y, and λ and η are the
coefficients used to balance different loss terms.

Due to the inherent large size of the ESRGAN network and
the ambiguity of some implementation details in the orig-
inal paper, we were not able to train our own ESRGAN
model from scratch. However, we implemented the net-
work architecture as described in the paper and converted
the authors’ pre-trained weights to be compatible with our
implementation. We used our ESRGAN model to compare
its performance with our SRGAN model on DIV2K valida-
tion set and the other benchmark datasets, in order to eval-
uate its effectiveness and generalization capability since the
authors did also train their model on DIV2K.

4. Evaluation and Results
4.1. Quantitative results

Quality Measures

Our SRGAN model was trained for 850 epochs using
the same parameters described before. We evaluated the
two methods on the DIV2K validation set and the Set5 and



Figure 6. ESRGAN Generator network

Set14 benchmark sets. We use the PSNR and SSIM
metrics for evaluation and confirm via experimentation that
MSE is not reliable to measure perceptual accuracy.

• PSNR : or Peak Signal-to-Noise Ratio is a commonly
used metric for evaluating the quality of a digital image
or video signal. PSNR measures the ratio of the peak
signal power to the noise power in the signal, and is of-
ten expressed in decibels (dB). In the context of image
super-resolution, PSNR is often used as a quantitative
measure to compare the quality of the super-resolved
image to the ground truth high-resolution image. A
higher PSNR value indicates a better quality image, as
it implies that the amount of noise in the signal is rela-
tively low compared to the strength of the signal itself.
Mathematically, we can express it as:

PSNR = 10 log10

(
MAX2

I

MSE

)
where MAXI is the maximum possible pixel value of
the image.

• SSIM : or Structural Similarity Index is a method used
to measure the similarity between two images by tak-
ing into account the structure of the images, rather than
simply comparing the individual pixel values. SSIM is
a full reference metric, meaning that it compares the
processed image to the original image rather than com-
paring two processed images. In the context of image
super-resolution, SSIM can be used as a quantitative
measure to compare the quality of the super-resolved
image to the ground truth high-resolution image. A
higher SSIM value indicates a better quality image, as
it implies that the processed image is more similar to
the original image in terms of its structure, contrast,
and luminance.
Mathematically, we can express it as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

where x and y are the input images, µx and µy are the
mean values of x and y, σ2

x and σ2
y are the variances

of x and y, and σxy is the covariance of x and y. The
constants c1 and c2 are small constants added to avoid
division by zero.

Results

Using our own implementation of the discussed quality
metrics, we evaluate and compare our SRGAN with the re-
sults of the original SRGAN paper and our ESRGAN. From
the qualitative results displayed in the table below, we can
see that our SRGAN model compares fairly well with the
results of the authors of the original SRGAN paper who
used a much larger training set (350k images sampled from
ImageNet) and trained their model for much longer. We can
also see the superiority of the ESRGAN model in each case.
Indedd the enhanced architecture and the subtle but impor-
tant technical modifications the authors introduced seem to
be improve the results quantitatively. However, it is unclear
to me if this improvement over previous methods is mostly
thanks to the subtle architectural and theoretical changes
or the sheer fact that the generator network of ESRGAN
is much deeper and involves much more convolutions.
Note that for ground-truth HR images, PSNR = ∞ and
SSIM = 1

.Performance of the two methods

DIV2K SRGAN(ours) SRGAN (Ledig et al) ESRGAN
PSNR 25.373 - 28.174
SSIM 0.706 - 0.775

Set5
PSNR 24.945 29.40 30.474
SSIM 0.718 0.8472 0.851

Set14
PSNR 23.770 26.02 26.614
SSIM 0.636 0.7397 0.713

4.2. Qualitative results

Qualitative results are a pivotal component in the
comprehensive evaluation of super-resolution methods as
they offer an insightful and intuitive perspective to the



quantitative results obtained through objective metrics,
such as PSNR and SSIM. The visual confirmation provided
by qualitative analysis enables a more precise and elaborate
understanding of the models’ ability to recover the lost
details and textures in the low-resolution images, and the
perceptual quality of the reconstructed high-resolution
images.
In our case, qualitative results are in accordance with the
results we got using the analytical quality measures. In fact,
our qualitative results demonstrate the ability of SRGAN
in retrieving fine details and textures that were missing in
the original low-resolution images. The high-resolution
images produced by SRGAN show sharp and well-defined
edges and feature relatively smooth transitions in color and
texture. Overall, our results confirm the effectiveness of
proposed perceptual loss and pre-training procedure. How-
ever, the results are not perfect or as good as ESRGAN’s.
This is expected since we only trained our model for 850
epochs on a relatively small dataset.
On the other hand, ESRGAN exhibits very good perfor-
mance in producing super-resolved images with rich details
and textures. The generated images have high perceptual
quality (from a human’s point of view) and surpass the
ones produced by SRGAN. The enhanced performance of
ESRGAN can be attributed to its more robust discriminator
that utilizes a relativistic approach to evaluate the realism
of the generated images, the subtle changes made in the
loss function and architecture or the fact that it is a much
more deeper network.

5. Discussion and Future work
In this project, we assessed the effectiveness of SRGAN

and ESRGAN (mostly SRGAN) on the DIV2K dataset
and other benchmarking sets. Both networks showed
improvement over the traditional interpolation methods as
well as previous state-of-the-art super-resolution methods.
The use of perceptual loss and deep residual learning in
both SRGAN and ESRGAN have proven to be effective
in super-resolving images, and the use of pre-trained
VGG network in SRGAN has shown to be effective in
capturing the high-level feature similarities between the
super-resolved and ground truth images. However, the
comparison between the two networks has shown that
ESRGAN performs better than SRGAN in terms of both
quantitative metrics (PSNR, SSIM) and visual quality.

Moreover, using a modified version of the perceptual
loss function proposed by Ledig et al, our SRGAN model
performs reasonably well on the benchmark datasets and so
does ESRGAN, especially given the relatively low number
of epochs that we used given that SR methods and GAN-

based models in generals require a lot of training time . We
intend to continue with the training of ESRGAN on DIV2K
and re-traing SRGAN for longer time and with a heavy
augmentation pipeline as for this project, no augmentations
were applied except a center crop. Allso exploring different
datasets can prove to benifical as explained in [22].
We also intend to explore multi-frame super resolution
methods like the one presented in [1]. These methods rely
on fusing images of the same sceneg enerated by hand
movements or intentional camera hardware move- ments,
and merge their information to obtain a higher reso- lution
image.



Figure 7. Bicubic (left) VS SRGAN (middle) VS ESRGAN (right) reconstruction results
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