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Background

Low-resolution image High-resolution image

—® . details and sharpness

SISR: the task of generating a high-resolution image from a single
low-resolution image input, with the aim of retrieving the missing | {———— High frequency restoration
high-frequency details and enhancing its overall quality.

te——o—Jp Improved overall quality and more Creative control
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Medical Imaging Remote sensing




SR methods
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SRGAN
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SRGAN architecture (Ledig et al 2017)



SRGAN

—— Authors’ loss function
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Methodology

Our loss function

. ISR 4 ~3;8 ~3;SR ~8;SR

pixel loss

TN 1
B loss adversarial loss  total variation loss |

_______________________________________________________________________________________________________________________

Intituition:

— We introduce MSE loss to penalize the differences in pixel space which ultimately leads
to more accurate color fidelity between I°% and 11712,

— Inspired by style transfer GANs, we introduce TV loss to reduce noise in/ SE and use a
very low weight for this loss component to avoid crashing textures in the process.

Pre-train the Generator using an MAE loss function:

Instead of pre-training the Generator network using MSE loss, we used experimented with
a weighted MSE and L1 loss, which both yielded better results than MSE from a human
viewer’s perspective, and settled for the latter.



ESRGAN
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ESRGAN Generator network (Wang et al 2018)



ESRGAN

ESRGAN:
« improves on the ideas introduced by SRGAN to achieve a better perceptual quality.

« The improvements are mainly technical and consist of modifying the architecture of the
generator network.

« The authors introduced the a residual in residual block and removed batch normalization
layers.

The loss function was also modified by introducing L penalty and taking VGG features before
activation for the perceptual loss component.

Lg = L‘p(-'r(f(-p | )\L{}“ bl



Evaluation and Results

The models were trained on the DIV2K dataset that contains:

» 1600 training images of different sizes divided into 800 high resolution images
and their corresponding x4 down-scaled and bicubic-interpolated low resolution
images.

» 200 test images divided into 100 high resolution images and their corresponding
low resolution counterparts.

The models were also evaluated on the Set5 and Set14 benchmark datasets.



Evaluation and Results

Pixel burning artifacts while training SRGAN, also known as BatchNorm artifacts



Evaluation and Results

DIV2K SRGAN(ours) SRGAN (Ledigetal) ESRGAN

PSNR 25.373 - 28.174
SSIM 0.706 - 0.1
Set5

PSNR 24.945 29.40 30.474
SSIM 0718 0.8472 0.851
Set14

PSNR 28710 26.02 26.614
SSIM 0.636 0.7397 0.713

Results after 850 epochs of training
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Evaluation and Results

Bicubic
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