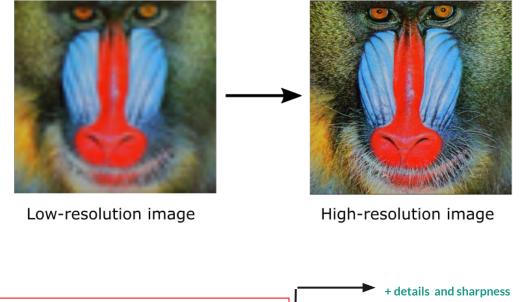


GAN-based Single Image Super Resolution

Student: Souhaiel BenSalem

20/02/2023

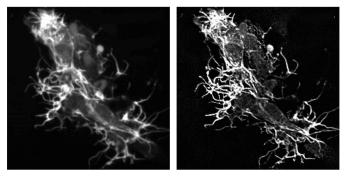
Background



SISR: the task of generating a high-resolution image from a single low-resolution image input, with the aim of retrieving the missing high-frequency details and enhancing its overall quality.

Background

Medical Imaging



Art restoration

Remote sensing

Surveillance

SR methods

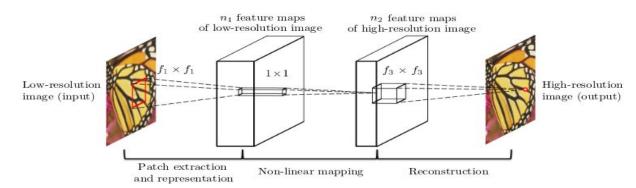
Interpolation based SR

(a) LR image Y

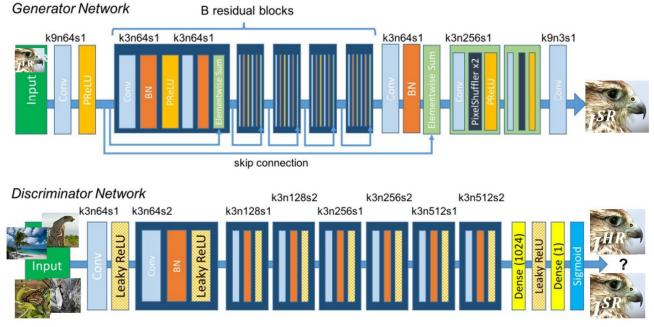
(b) SR image X_l

Reconstruction based SR

Patch based SR



SRGAN

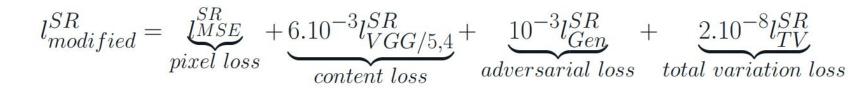


SRGAN architecture (Ledig et al 2017)

SRGAN

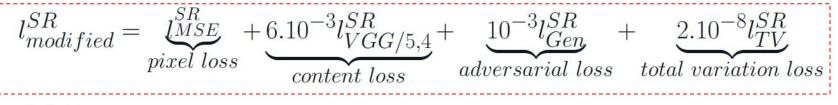
Authors' loss function

Our loss function



Methodology

Our loss function



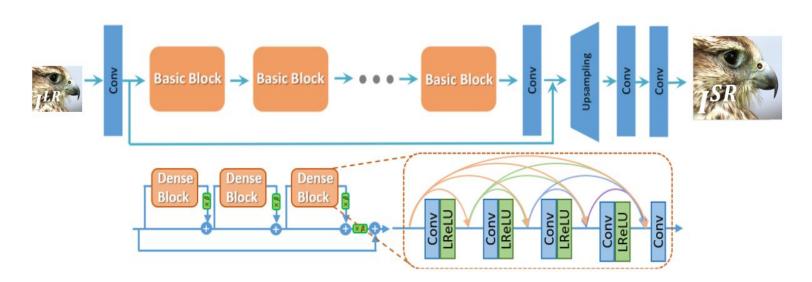
Intituition:

- We introduce MSE loss to penalize the differences in pixel space which ultimately leads to more accurate color fidelity between I^{SR} and I^{HR} .
- Inspired by style transfer GANs, we introduce TV loss to reduce noise in I^{SR} and use a very low weight for this loss component to avoid crashing textures in the process.

Pre-train the Generator using an MAE loss function:

Instead of pre-training the Generator network using MSE loss, we used experimented with a **weighted MSE** and L1 loss, which both yielded better results than MSE from a human viewer's perspective, and settled for the latter.

ESRGAN



ESRGAN Generator network (Wang et al 2018)

ESRGAN

ESRGAN:

- improves on the ideas introduced by SRGAN to achieve a better perceptual quality.
- The improvements are mainly technical and consist of modifying the architecture of the generator network.
- The authors introduced the a residual in residual block and removed batch normalization layers.

The loss function was also modified by introducing L_1 penalty and taking VGG features before activation for the perceptual loss component.

$$L_G = L_{percep} + \lambda L_G^{Ra} + \mu L_1$$

The models were trained on the DIV2K dataset that contains:

- 1600 training images of different sizes divided into 800 high resolution images and their corresponding x4 down-scaled and bicubic-interpolated low resolution images.
- 200 test images divided into 100 high resolution images and their corresponding low resolution counterparts.

The models were also evaluated on the Set5 and Set14 benchmark datasets.

Pixel burning artifacts while training SRGAN, also known as BatchNorm artifacts

DIV2K	SRGAN(ours)	SRGAN (Ledig et al)	ESRGAN
PSNR	25.373	-	28.174
SSIM	0.706	-	0.775
Set5			
PSNR	24.945	29.40	30.474
SSIM	0.718	0.8472	0.851
Set14			
PSNR	23.770	26.02	26.614
SSIM	0.636	0.7397	0.713

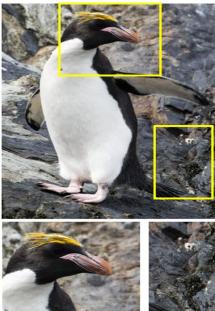
Results after 850 epochs of training

Bicubic

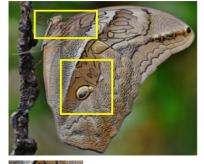
SRGAN



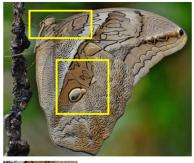
ESRGAN



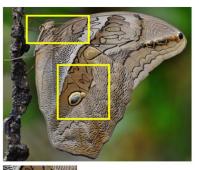
Bicubic



SRGAN



ESRGAN



Thank You !