
Report on Maze Rider

Hongyu Zhou Souhaiel Ben Salem Shiyao Li

1. Introduction
The Maze Rider problem is an example of a more gen-

eralized issue, the trade-off between exploration and ex-
ploitation. In this project, the existence of the wall and
the pits, and the changing position in every episode make
the problem more challenging. To tackle the exploration-
exploitation problem, we devote ourselves to efficient sam-
pling, reward shaping, state space reduction as well as ex-
ploring different models.

For this project, we have implemented several different
algorithms for deep reinforcement learning on the Maze
Rider problem. During the testing phase, we test the per-
formance of not only the small map but also do relevant
experiments and tests on the large map.

In the first exercise, we store the states (the position of
the player and the position of the goal) in a hash in a com-
pact way. Then, we compare the differences between Q-
learning and its variants for a model-free tabular reinforce-
ment learning algorithm. In the second exercise, we use
DQN and policy-based methods separately. In the end, we
can achieve good results in both the small map and the large
map based on model-free algorithms. As for deep rein-
forcement learning, we have quick converging performance
in the small map but sub-optimal performance in the large
map.

2. Algorithms
2.1. Model free tabular RL

Before getting into tabular RL models, we construct a
hash function to map the state into a more compact space.
Considering that it is generally the agent position, the goal
position and the pit positions that characterize the state, we
tend to ignore the information for empty cells and walls.
Since in each environment, the pits are selected following
a Bernoulli distribution, the number of states increases ex-
ponentially with regard to the total number of pits, which
may lead to the explosion of the state space. To this con-
cern, it is a reasonable sacrifice that we select merely goal
position and agent position as the state space, making the
dimension linearly to the maze size and the total number of
goal positions.

We implement Q-learning, double Q-learning, SARSA
and Dyna-Q in this setting, with various sampling methods
and reward shaping techniques as complementary ingredi-
ents.

2.2. Deep RL

We apply DQN, reinforce and A2C methods to tackle
the problem. In DQN, we also implement various sampling
methods and heuristic approaches such as reward reshaping
to help explore the environment. In addition, we try differ-
ent ways to formulate the state space such as MLP and con-
volution network. As for policy based method, same tech-
niques are utilized but without a converging performance
even in the small environment.

2.3. Sampling

In our tabular algorithms as well as in DQNs, the sam-
pling method typically used is an epsilon-greedy explo-
ration which we implemented first, it involves selecting the
best action based on the current estimated Q-values with
probability 1-ϵ, and selecting a random action with proba-
bility ϵ.

Considering the disadvantage of these algorithms is the
lack of active exploration, we also try to use Thompson
Sampling. In the Thompson Sampling algorithm, we need
to maintain a prior distribution p(θ) and a posterior distri-
bution to estimate the value of each action. In the Maze
Rider game, we can use a neural network to estimate the
value function for each action. After every time we select
an action and observe a reward, we update the posterior dis-
tribution p(θ|D1:t), D1:t denotes the empirical data for the
previous t time steps. And use the new posterior distribu-
tion to select the next action.

2.4. Reward shaping

We apply two methods to reshape the reward. Firstly we
penalize the agent for hitting the walls. If the state and the
next state are identical, then the agent hits the wall and we
give it an additional negative reward. Secondly, we apply
a count-based penalization at every step. In an episode, the
more (state, action) tuple is visited, the more penalization
we give to the agent, which is similar to giving the agent a

1



short period of memory. These methods efficiently help the
agent avoid hitting the wall and sticking itself in a loop.

3. Experiments
3.1. Effect of reward shaping

We do an experiment(with less episodes) in Q-learning
and deep Q-learning to compare the performance with or
without reward shaping. It is found that reward shaping can
drastically accelerate the learning speed of the agent and its
converging performance3.

3.2. Study on hyperparameters

The learning rate α1 and exploration rate ϵ2 are the two
most important hyperparameters to study in tabular RL,
where the state and action spaces are small and discrete.
This is because the learning rate determines the step size of
the Q-value updates, which affects the rate of convergence
and the stability of the algorithm while the exploration rate
affects the balance between exploration and exploitation.

3.3. Thompson sampling

There is no obvious benefits for Thompson sampling
over ϵ-greedy sampling5.

3.4. Success in larger environment

The Q-learning learns slowly but converges successfully
however the size of the environment. The Deep Q-learning
learns faster, but in larger and more complex environment,
it reaches sub-optimal points but not guaranteed to reach the
optimal q-function4.

4. Discussion
SARSA tends to avoid dangers, which accounts for their

poor performance in this specific environment where pits
and goals can gather together. Q-learning or DQN, how-
ever, succeed in accomplishing the task because when they
update the q-value, they take the maximum q-value of the
next state, hence not influenced by negative actions at the
next state. Reinforce algorithm fails because it is essen-
tial for it to have a complete episode, or the cumulative re-
turn is always 0. In addition, the changing position in every
episode poses another challenge for learning in this algo-
rithm. A2C fails for the same reason as in SARSA. When
pits and goals stay close to each other, A2C tends to avoid
danger.

In case of sparse reward tasks, it is useful to reshape
the reward by making it dense. Counting based reward and
penalization can better regularize the agent’s performance.
The agent also benefits from a contracted state space. Com-
pared to tabular RL, deep RL has the advantage in the state
space design. It is more flexible and more practical to con-
tract the state space in deep RL. A proper learning rate and

exploration ratio(epsilon) can accelerate the convergence
speed, yet the final performance varies little.

5. Appendix

Figure 1. Comparison of the effect of α. Top: small env, Down:
large env

Figure 2. Comparison of the effect of ϵ. Top: small env, Down:
large env



Figure 3. Comparison of the effect of reward shaping. Top left:
small env QL with reward shaping, Top right: small env QL with-
out reward shaping, Down left: large env DQL with reward shap-
ing, Down right: large env DQL without reward shaping

Figure 4. Success in large environment. Top: Q-learning, Down:
Deep Q-learning

Figure 5. Thompson sampling in DQL. Left: small env, Right:
large env


	. Introduction
	. Algorithms
	. Model free tabular RL
	. Deep RL
	. Sampling
	. Reward shaping

	. Experiments
	. Effect of reward shaping
	. Study on hyperparameters
	. Thompson sampling
	. Success in larger environment

	. Discussion
	. Appendix

