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Abstract

Self-supervised learning (SSL) is a sub-field of machine
learning in which a model is trained to learn representa-
tions of input data without the need for explicit supervision
in the form of labeled data. During the past few years, SSL
has shown great success in the field of computer vision with
the emergence of several powerful contrastive (SimCLR [3]
, MoCo [5], CPC [8]) and non-contrastive methods (Auto-
encoding, Generative Pre-training, Clustering and VICreg).
The goal of this project is In this project, we investigate VI-
CReg, the novel self-supervised learning method presented
in [1] by pre-training a visual model on smaller datasets
than what is suggested in the original paper, and evaluat-
ing the performance of an ImageNet pre-trained model on
additional downstream tasks.

1. Introduction
Self-supervised representation learning has seen signif-

icant advancements in recent years, with many methods
achieving performance comparable to supervised baselines
on various downstream tasks. A popular approach among
these methods is the use of joint embedding architectures,
where two networks are trained to produce similar embed-
dings for different views of the same image. A well-known
example of this architecture is the Siamese network, which
uses the same weights for both networks. One of the main
challenges with joint embedding architectures is preventing
collapse, which occurs when the two branches of the
network produce constant or non-informative vectors,
ignoring the input. Two main strategies to prevent collapse
are contrastive methods and information maximization
methods. However contrastive methods can still be the
subject of a dimentional collapse where the embeddings
only span a lower-dimensional subspace instead of the
entire available embedding space [6]
The studied method, VICReg (Variance-Invariance-
Covariance Regularization), is an information maximiza-
tion method that was developed to explicitly avoid the
collapse problem by applying two regularization terms to

the embeddings: (1) maintaining the variance of each em-
bedding dimension above a threshold, and (2) decorrelating
each pair of variables. Moreover, unlike other similar meth-
ods, VICReg does not require techniques such as weight
sharing, batch normalization, feature-wise normalization,
output quantization, stop gradient, memory banks, etc. and
performs similarly to state of the art methods on several
downstream tasks.

2. VICreg
2.1. The method

VICreg is based on using a loss function that has three
components: Invariance, Variance, and Covariance.

• Invariance : makes the embedding from different im-
age view closer to each other.
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• Variance: uses a hinge loss to maintain the standard
deviation of each variable of the embedding above a
given threshold, this encourages the embedding vec-
tors of samples within a batch to be different.
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• Covariance: decorrelates the variables of each embed-
ding and prevents informational collapse in which the
variables would vary together or be highly correlated.
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where C(z) is the covariance matrix as defined for the
Barlow Twins [10] method.

The overall loss function is a weighted sum of the three
terms:

l(Z,Z0) = λs(Z,Z0)+µ[v(Z)+v(Z0)]+ν[c(Z)+c(Z0)]
(1)



Where λ, µ, and ν are parameters that determine the relative
importance of each term.

Figure 1. VICreg architecture [1]

2.2. Our approach

For this project, we made some key changes in the model
we used compared to that used in the paper. throughout
the project, we use ResNet-34 backbones as encoders
with output dimension 512 (representation space) and the
expander consist of 3 layers that are fully connected and
have an output size of 2048 (embedding space).

Figure 2. our model

3. Implementation & Experimental Results

3.1. Datasets:

All of experiments i.e pretraining and linear evaluation
were conducted on the CIFAR-10 and CIFAR-100 datasets.
CIFAR-10 consists of 60,000 32x32x3 images distributed
evenly in 10 classes. 50,000 of these images are intended
for training and the remaining 10,000 are for testing,
whereas CIFAR-100 has 100 classes containing 600 images
each: 500 training images and 100 testing images per class.

3.2. Pre-training on CIFAR-10 & CIFAR100

We re-implemented the paper in a simpler way to gain
a deeper understanding of the theoretical concepts and to
ensure that we fully grasp the practical applications of the
method.

3.2.1 Implementation Details

The details for using VICReg for pretraining visual back-
bones on the 10-class CIFAR and 100-class CIFAR datasets
in a self-supervised manner are as follows. We pre-trained
our models for 100 epochs using the LARS optimizer as
outlined in [9]. of 10−5 and a learning rate calculated as
lr = batch size/256 ∗ base lr, where the default batch
size is 128 and base lr is set to 0.2. The learning rate fol-
lows a cosine decay schedule, as described in [7], starting
at 0 with 10 warmup epochs and ending at 0.002. We also
used the same augmentation pipeline described in the paper
with the only difference being the change of the Random-
ResizedCrop method’s scale’s lower bound form 0.08 to 0.2
since we are dealing with 32x32 images.

3.2.2 Experimental Results

Inspecting VICreg Loss

We visualize the different components of VICreg’s loss as
well as the total loss.

Figure 3. Pretraining losses on CIFAR-100 (left) and CIFAR-10
(right) after 100 epochs

Interestingly, for the choice of λ = µ = 25 and ν = 1, we
see that in both cases, the Invariance and Covarinace losses
converge to the same scale, which can be indicative of a
collapse problem.

Pre-evaluation

Figure 4. T-SNE projection of the CIFAR-10 test set embeddings
in 2D and 3D



To get a sense of our backbones performance before mov-
ing to the downstream tasks, we project the output of our
model’s projector i.e embeddings for the test set of CIFAR-
10 and (respectively a subset of CIFAR-100) using the T-
SNE method to visualize the ability of our model to sepa-
rate classes from each other.
We can see that our model is capable of separating the 10
classes for the most part. We also notice that classes with
similar visual features such as trucks and automobiles are
projected closer to each other.

3.3. Linear Evaluation

We follow the same standard linear evaluation process
as described in the paper. We train a linear classifier on top
of the frozen representations of our pre-trained ResNet-34
backbones for 100 epochs using SGD as an optimized and
a learning rate of 0.01 that follows a cosine decay. We use
the exact augmentation pipeline as described in the paper.

3.3.1 Experimental results

The linear evaluation results show that the linear clas-
sifier trained on top of our CIFAR-10-pre-trained back-
bone achieves an accuracy of 76,67% whereas the clas-
sifier trained on top of our CIFAR-100-pre-trained back-
bone achieves only an accuracy of 51.22%. The perfor-
mance diffence is exoected since the first backbone was
only tasked with learning the visual representation of 10
classes whereas the other backbone was trained to learn 100
different visual representations.

Figure 5. Evaluation of the accuracy for the downstream classifi-
cation task on CIFAR-10 (top) and CIFAR-100 (bottom).

Before performing our final linear evaluation after 100

epochs of pre-training, we also performed a pre-mature lin-
ear evaluation after only 50 epochs. We noticed that more
pre-training epochs led to an improvement of the accuracy
for the linear classification task by 2%. We also pre-trained
a ResNet-18 backbone to test the effect of the size of the
pre-traing batch, since ResNet-18 allows us to use a batch
size of 256 a noticed that the overall accuracy for the the
linear classification did not improve. However, the training
process is more stable.

3.4. Generalization evaluation

To evaluate the generalization capabilities of backbones
trained with VICreg, we performed a linear evaluation of
the ResNet-50 backbone used in the paper and originally
tained on ImageNet-1000, on CIFAR-10 and CIFAR-100.

Figure 6. Evaluation of the accuracy of the pre-trained ResNet-
50 for the downstream classification task on CIFAR-10 (top) and
CIFAR-100 (bottom) after 100 epochs.

We can notice that not only that the model generalizes well
on the CIFAR-10 and CIFAR-100 dataset and achieves bet-
ter accuracies, but also it is more stable during training.
The evaluation of the representations obtained with the
ResNet-50 backbone pretrained with VICReg on ImageNet-
1000, our ResNet-34 backbone pretrained with VICreg
on CIFAR-10 and our ResNet-34 backbone pretrained on
CIFAR-100 for the linear classification task is summarized
in the following table.

Linear Evaluation of the three backbones

Backone CIFAR-10 (top-1) CIFAR-10 (top-1)
ResNet-50 [1] 84.67 66.75
ResNet-34 (Ours) 76.67 -
ResNet-34 (Ours) - 51.22



4. Conclusion
During this project, we explored VICReg, a powerful

self-supervised learning method that introduces a novel ob-
jective to learn representations that are invariant to different
views, preserve variation in the data, and contain maximum
information. Empirically, VicReg performs better than con-
trastive techniques. Its performance is also on par the other
non-contrastive techniques (BYOL [4], SwAV [2]), but it is
more interesting and has greater potential due to its simplic-
ity and theoretical transparency.
Our next goal will be to dive deep into the details and try
various combinations of hyperparameters and try to com-
pare VICreg to other non-contrastive methods.
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Munos, and Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning, 2020. 4

[5] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning, 2019. 1

[6] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian.
Understanding dimensional collapse in contrastive self-
supervised learning. 2021. 1

[7] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts, 2016. 2

[8] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding, 2018.
1

[9] Yang You, Igor Gitman, and Boris Ginsburg. Large batch
training of convolutional networks, 2017. 2

[10] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
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